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ABSTRACT
We present Catalog, an educational content classification and
alignment system that tags learning and assessment content in a
semantically meaningful and accurate manner. Unlike other
approaches that rely on keywords or search terms and crosswalks
between knowledge taxonomies, Catalog utilizes powerful NLP,
specifically language models based on the Transformer
architecture, to encode content in a context attentive fashion. This
allows us to capture deep conceptual and contextual relations in
content to classify it against a wide variety of educational
standards and taxonomies. We present results from empirical
studies demonstrating efficacy of our approach in classifying
learning content to the Next Generation Science Standards
(NGSS).
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1. INTRODUCTION

Tagging educational content with the most relevant learning and
assessment standards and education search terms is one of the
most critical elements in creating highly efficacious content. This
enables the tracking of student skill gaps, recommendation of
remediative learning content and mastery of discipline topics,
skills and cross cutting capabilities. With the ever growing
volume of digital learning content and educational standards [12]
the demands on tagging content are not being met by current
solutions.

Current processes to tag content typically starts with raw untagged
content that has to be manually reviewed, understood and
analyzed by subject matter experts (SMEs) and then classified
against a particular education standard e.g. the NGSS [10]
resulting in the first set of foundational standards tags. Typically,
these standards are hierarchical and utilize a taxonomic
knowledge representation to capture the knowledge structure
including core disciplinary knowledge, skills and/or cross cutting
capabilities. Given the foundational tags one can transfer onto any
number of desired taxonomies, for instance the Common Core
State Standards [11], using taxonomy crosswalks [13]. Crosswalks
are essentially mappings from one standard’s taxonomy to another
that have for the most part been developed by SMEs and are many
times proprietary limiting their applicability.

While in theory this process seems to offer a relatively scalable
solution to the content tagging problem, in practice it is inefficient
and has significant limitations. Firstly, the initial step of creating
the foundational tags is manually executed and highly subjective,
making it expensive and error prone. But even when that is done
well the taxonomy crosswalks do not offer a perfect solution,
because these crosswalks are not one-to-one mappings between
the tags of one taxonomy and the other. Due to the hierarchical
nature of the standards taxonomies and how they are designed and
crafted by SMEs, oftentimes there are vast differences in the
levels of knowledge abstraction, resulting in many-to-many
mappings for the crosswalks connecting them. The end result is
that for a given unit of content even when there is a foundational
tag available and using an associated crosswalk, SMEs still have
to make the final adjudication of the most appropriate tag in the
target standard’s taxonomy.

To address these challenges we have developed Catalog, an
automated content classification system that leverages recent
advances in NLP, specifically the Transformer architecture. This
allows us to analyze educational content with richer context-aware
text embeddings and pre-trained language models. We have
evaluated the accuracy of our approach with promising results on
an OpenStax Biology textbook [14] with ground truth NGSS tags
(human experts labeled). We believe Catalog can significantly
help streamline and accelerate manual workflows around content
tagging and curation. These are applicable for both existing or
new content, enriching existing content tags for more targeted
search, discovery and recommendation as well as maintaining
content alignments as educational standards evolve.

2. TECHNICAL APPROACH AND
SYSTEM DETAILS
2.1 Transformers and Text Embeddings
At the core of Catalog’s content classification tagging system is
the Transformer architecture, first proposed by Vaswani et al in
2017 [2]. Catalog utilizes a series of pre-trained Transformer
models [5, 6] to encode text-based content in vectorized features
which are then further used to analyze the probability that the
content is related to a textual description of the target taxonomy.
Further details of this approach are presented in the following
subsections. Here we present a brief overview of the Transformer
architecture.

By eschewing the sequentially-processed nature of previous
deep-learning NLP architectures (like LSTMs [3] and GRUs [4])
in favor of multi-head attention, the Transformer architecture is
highly parallelizable and scalable, allowing for richer
context-aware text embeddings and a substantial pre-training
capacity which allows for a transfer learning approach to NLP
tasks. Since its inception, research into the Transformer
architecture has exploded, with variants such as Google’s BERT
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[5] and OpenAI’s GPT series [6, 7, 8] topping several NLP
benchmarks, such as the multitask GLUE suite [9].

As indicated above, Transformers are a deep-learning architecture
based on the attention mechanism. The original formulation of the
Transformer architecture used a variant known as scaled
dot-product attention, defined as

Attention(Q, K, V) = softmax( ) V,𝑄𝐾𝑇

𝑑

where the matrices Q and K are called the queries and keys,
respectively, and each have column-dimension d, while the matrix
V is called the values and has column-dimension d’. When the
queries, keys, and values are all equal to some matrix X, the
resulting operation is called self-attention. The rows of this matrix
X correspond to context-independent feature vectors of the tokens
of the input text, each with a small positional encoding vector
added so that the model is aware of each token’s position within
the input sequence. Self-attention can be thought of as an
operation which recomputes each token as a linear combination of
the other tokens, where the weights of the linear combination

correspond a scaled dot-product similarity score (the term).𝑄𝐾𝑇

𝑑

In this way, (potentially long-range) interactions between tokens
are captured. To allow the Transformer to learn different patterns
of interaction, several matrices of learnable weights are used to
compute multi-head self-attention:

MultiHead(X, X, X) = Concat(head1, head2, …, headh)WO,

where

headi = Attention(XWi
Q, XWi

K, XWi
V),

and all of the W matrices consist of learnable weights. After
multi-head self-attention is computed, the resulting feature vector
is fed to a single-hidden-layer feedforward neural network for
aggregation and resizing. These two consecutive operations,
multi-head self-attention followed by the feedforward neural
network, constitute the core of a Transformer block. A
Transformer model, then, is built by chaining several Transformer
blocks together, each potentially with their own set of weight
matrices.

2.2 How Catalog Works
Catalog’s AI-powered content tagging system utilizes a
Transformer-based semantic matching engine to rank taxonomic
categories by their semantic similarity to given educational
content. The semantic matching algorithm works as follows. We
are given a collection of textual descriptions of taxonomic
categories (e.g. NGSS [10]), which we refer to as “documents,”
and the raw text of educational content, referred to as the “query”
that needs to be classified. For each document, we produce a
string of input text by combining it with the query along with a
small amount of connective text. Using a Transformer model
pre-trained for next token prediction, we then process the input
string to convert the query tokens into feature vectors. These
feature vectors are then further processed to produce probabilities
for each query token, conditioned on the document text.
Additionally, we process the query text by itself in order to
determine unconditioned probabilities for the query tokens.
Finally, a match score is produced for each document by
comparing the conditioned vs. unconditioned query token
probabilities and then aggregating these into a single real-valued

score. Documents are then ranked according to these scores, with
a higher score indicating a higher match similarity.

Figure 1: Catalog system architecture is designed to be modular with
disturbed services hosted on AWS.

Figure 2: Sample page from the OpenStax Biology 2e textbook used in
our experiments.

System architecture and implementation wise, Catalog has two
core architectural components as shown in figure 1. The first is a
Lambda API Endpoint that leverages the serverless architecture
and serves mainly as an interface between the user and the
Transformer-based semantic query process, the “AI Engine”. It
authenticates users’ requests, manages requests and accesses the
system database. The second major component, “AI Engine”
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manages content processing and returns the match scores from
classification.

Figure 3: Sample from NGSS High School Life Science Biology
performance expectation (PE) standards. Image shows 4 of the 24
unique PE standards used in our experiment.

2.3 Experimental Results
We tested the accuracy and performance of our approach on a
learning content dataset extracted from the OpenStax Biology 2e
high school textbook [14]. The dataset consists of approximately
500 pages of content spanning 98 chapter/subchapter sections that
ranged from 410 to 545 words each. Each of the book’s 98
sections is annotated with NGSS High School Life Sciences
(HS-LS) performance expectation (PE) tags [10], also provided by
OpenStax [14] and served as the ground truth labels in our
experiment. There are a total of 24 unique Biology NGSS PE
standards applicable to our dataset, essentially rendering this a 24
class classification problem. Figure 2 shows a sample from the
OpenStax textbook and in figure 3 we include sample PEs from
the 24 NGSS standards used in our experiment. We note that
these ground truth labels are not necessarily unique: each section
is associated with one to three NGSS tags.

Topic documents for the 24 PE standards were assembled from
the Topic Arrangements of the NGSS that includes descriptions of
PEs, Science and Engineering Practices, Disciplinary Core Ideas,
Crosscutting Concepts. Because our model predicts NGSS tags
for a given OpenStax section by ranking them, we assess
performance by computing the top-n overall accuracy, that is, the
proportion of predictions which have at least one ground truth
label in their top-n ranked predictions (note that for n = 1, this is
just the traditional overall accuracy measure). For comparison, we
had an SME perform this classification exercise manually i.e.
provide up to three suggested NGSS PE tags for each of the 98
book sections in our dataset. This SME is a high-school science
teacher in a New York city school district and is highly
experienced with the NGSS standards.
Before examining the results of this experiment, we note that one
NGSS standard, HS-LS1-2, was severely overrepresented in our
dataset, accounting for nearly 42% of all ground truth tags, more
than 5 times the next-most-represented tag. To account for this in
our accuracy computations, we decided to take 1000 random
subsamples of this class, and then average the top-n accuracy over
these subsamples. Figure 4 shows the resulting NGSS tag
distribution of such a subsample.
Figure 5 shows the top-n accuracy averaged over the 1000
subsamples as a function of n. When compared to ground truth,
the semantic query model achieved 51%, 73%, and 77% top-1,

top-2, and top-3 overall accuracy, respectively, among the 24
NGSS PE standards. In contrast, the SME achieved 48%, 68%,

Figure 4: Distribution of NGSS tags across subsample of data. In all,
55 OpenStax sections are associated with tag HS-LS1-2, whereas each
subsample randomly selects only 11 of these to be commensurate with
the next most represented tag, HS-LS2-5.

Figure 5: Top-n Accuracy vs. n for 98 items of section text from the
OpenStax Biology 2e textbook, tagged against the NGSS High School
Life Sciences performance expectation standards (as above, n is the
number of top predictions within which at least one ground truth
label must fall for the prediction to be counted as correct).

and 70% top-1, top-2, and top-3 overall accuracy, respectively. It
should also be noted that it took the SME 520 minutes to complete
the manual classification of the dataset, whereas our system
completed processing in only approximately 2 minutes.

3. CONCLUSION
In this paper we have introduced Catalog, a NLP based content
classification system that utilizes recent advances in transfer
learning approaches to deeply and accurately tag educational
content against popularly used learning standards. Unlike other
approaches that rely on keywords or search terms and crosswalks
between knowledge taxonomies, Catalog is built on a language
modeling architecture that understands the deep semantic
structure and relationship between concepts, topics, learning
objectives and other attributes of content. We have presented early
results from empirical studies demonstrating efficacy of our
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approach in classifying learning content to the Next Generation
Science Standards (NGSS).
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